Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders
نویسندگان
چکیده
Supervised multi-channel audio source separation requires extracting useful spectral, temporal, and spatial features from the mixed signals. The success of many existing systems is therefore largely dependent on the choice of features used for training. In this work, we introduce a novel multi-channel, multiresolution convolutional auto-encoder neural network that works on raw time-domain signals to determine appropriate multiresolution features for separating the singing-voice from stereo music. Our experimental results show that the proposed method can achieve multi-channel audio source separation without the need for hand-crafted features or any preor post-processing.
منابع مشابه
Multi-Resolution Fully Convolutional Neural Networks for Monaural Audio Source Separation
In deep neural networks with convolutional layers, each layer typically has fixed-size/single-resolution receptive field (RF). Convolutional layers with a large RF capture global information from the input features, while layers with small RF size capture local details with high resolution from the input features. In this work, we introduce novel deep multi-resolution fully convolutional neural...
متن کاملIterative AMR-WB Source and Channel-Decoding of Differential Space-Time Spreading Assisted Sphere Packing Modulation
In this paper we present a novel system that invokes jointly optimised iterative sourceand channel-decoding for enhancing the error resilience of the Adaptive Multi Rate WideBand (AMR-WB) speech codec. The resultant AMR-WB coded speech signal is protected by a Recursive Systematic Convolutional (RSC) code and transmitted using a non-coherently detected multiple-input multiple-output (MIMO) Diff...
متن کاملSampleCNN: End-to-End Deep Convolutional Neural Networks Using Very Small Filters for Music Classification
Convolutional Neural Networks (CNN) have been applied to diverse machine learning tasks for different modalities of raw data in an end-to-end fashion. In the audio domain, a raw waveform-based approach has been explored to directly learn hierarchical characteristics of audio. However, the majority of previous studies have limited their model capacity by taking a frame-level structure similar to...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملIntelligent Single-Channel Methods for Multi-Source Audio Analysis
This thesis investigates the potential of recent machine learning methods for the challenging task of single-channel, multi-source audio audio analysis, i.e., information extraction from single-channel audio where the sources of interest (e.g., speech) are mixed with multiple interfering sources. First, it is shown that source separation by recently proposed techniques for non-negative matrix f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018